The University of Texas at Austin

 Dept. of Electrical and Computer Engineering Midterm \#1Date: September 30, 2021
Course: EE 313 Evans

Name: \qquad Last, First

- This in-person exam is scheduled to last 75 minutes.
- Open books, open notes, and open class materials, including homework assignments and solution sets and previous midterm exams and solutions.
- Calculators are allowed.
- You may use any standalone computer system, i.e. one that is not connected to a network.
- Please disable all wireless connections on your calculator(s) and computer system(s).
- Please mute all computer systems.
- Please turn off all phones.
- No headphones are allowed.
- All work should be performed on the midterm exam. If more space is needed, then use the backs of the pages.
- Fully justify your answers. If you decide to quote text from a source, please give the quote, page number and source citation.

Problem	Point Value	Your score	Topic
1	22		Sampling Sinusoids
2	24		Squaring System
3	30		AM Radio
4	24		Fourier Series Properties
Total	100		

Problem 1.1 Sampling Sinusoids. 22 points.
Consider the sinusoidal signal $x(t)=\sin \left(2 \pi f_{0} t+\theta\right)$ for continuous-time frequency f_{0} in Hz.
We then sample $x(t)$ at a sampling rate f_{s} in Hz to produce a discrete-time signal $x[n]$.
(a) Derive the formula for $x[n]$ by sampling $x(t)$. 6 points.
(b) Based on your answer in part (a), give a formula for the discrete-time frequency $\widehat{\omega}_{0}$ of $x[n]$ in terms of the continuous-time frequency f_{0} and sampling rate f_{s}. Units of $\widehat{\omega}_{0}$ are in rad/sample. 6 points.
(c) For continuous-time frequency $f_{0}=392 \mathrm{~Hz}$ and sampling rate $f_{\mathrm{s}}=48000 \mathrm{~Hz}$,
i. What is the smallest discrete-time period in samples for $x[n]$? Why? 5 points.
ii. How many continuous-time periods of $x(t)$ are in the smallest discrete-time period of $x[n]$? Why? 5 points.

Problem 1.2 Squaring System. 24 points.
Consider the signal $x(t)=\cos \left(2 \pi f_{1} t\right)+\cos \left(2 \pi f_{2} t\right)$ where $f_{1} \neq f_{2}$.
The signal $x(t)$ is input to squaring system to produce the output $y(t)=x^{2}(t)$.
(a) Write $y(t)$ as a sum of cosines. What non-negative frequencies are present? Leave your answers in terms of f_{1} and $f_{2} .9$ points.
(a) For $f_{1}=110 \mathrm{~Hz}$ and $f_{2}=220 \mathrm{~Hz}$, write the signal $y(t)$ using the Fourier series synthesis formula

$$
y(t)=\sum_{k=-N}^{N} a_{k} e^{j 2 \pi\left(k f_{0}\right) t}
$$

i. What is the largest possible positive value of f_{0} ? 3 points.
ii. What is the value of N ? 3 points.
iii. Give the values of all the Fourier series coefficients a_{k} for $k=-N, \ldots, 0, \ldots, N .9$ points.

Problem 1.3. AM Radio. 30 points.
Each AM radio station operates at a fixed broadcast frequency f_{c} in the range 530 kHz to 1700 kHz .
Amplitude Modulation. An AM radio transmitter converts an audio signal $x(t)$ to a radio signal $s(t)$ via

$$
s(t)=(x(t)+A) \cos \left(2 \pi f_{c} t\right)
$$

where A is a constant chosen to be greater than the maximum value of $|x(t)|$.
For this problem, use $f_{c}=1300 \mathrm{kHz}$ and $x(t)=\cos \left(2 \pi f_{1} t+\frac{\pi}{4}\right)$ where $f_{1}=700 \mathrm{~Hz}$.
(a) Draw the spectrum for $x(t) .6$ points.
(b) Draw the spectrum for $s(t) .6$ points.

Amplitude Demodulation. We will use undersampling in the demodulation process to convert the received AM radio signal $s(t)$ to an audio signal $\hat{x}(t)$.
(c) Sample the AM radio signal $s(t)$ at a sampling rate of $f_{s}=650 \mathrm{kHz}$ to create the signal $s[n]$. Give a formula for $s[n] .6$ points.
(d) Draw the spectrum for $s[n]$ for discrete-time frequencies $-5 \pi<\widehat{\omega} \leq 5 \pi$. 6 points.
(e) What continuous-time frequencies would be present when reconstructing a continuous-time signal from $s[n]$? Please include negative, zero, and positive frequencies, if present. 6 points.

Problem 1.4. Fourier Series Properties. 24 points.
The continuous-time Fourier series has several properties.
For example, if $y(t)=A x(t)$ and $x(t)$ is periodic with fundamental period f_{0} and Fourier series coefficients a_{k}, then the Fourier series coefficients b_{k} for $y(t)$ can be found using $b_{k}=A a_{k}$:

$$
y(t)=A x(t)=A \sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi\left(k f_{0}\right) t}=\sum_{k=-\infty}^{\infty} A a_{k} e^{j 2 \pi\left(k f_{0}\right) t}
$$

For the following expressions, derive the relationship between the Fourier series coefficients b_{k} for $y(t)$ and the Fourier series coefficients a_{k} for $x(t)$ where

$$
a_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j k \omega_{0} t} d t
$$

(a) $y(t)=x(t-T) .6$ points.
(b) $y(t)=x(-t) .9$ points.
(c) $y(t)=\cos \left(2 \pi f_{0} t\right) x(t) .9$ points.

